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A B S T R A C T

In recent years, the Internet-of-Things (IoT) technology is being used in many application areas such as
healthcare, video surveillance, transportation etc. The massive adoption and growth of IoT in these areas
are generating a massive amount of data. For example, IoT devices such as cameras are generating a huge
amount of images when used in hospital surveillance scenarios. Here, face recognition is an important element
that can be used for securing hospital facilities, emotion detection and sentiment analysis of patients, detecting
patient fraud, and hospital traffic pattern analysis. Automatic and intelligent face recognition systems have high
accuracy in a controlled environment; however, they have low accuracy in an uncontrolled environment. Also,
the systems need to operate in real-time in many applications such as smart healthcare. This paper suggests
a tree-based deep model for automatic face recognition in a cloud environment. The proposed deep model
is computationally less expensive without compromising the accuracy. In the model, an input volume is split
into several volumes, where a tree is constructed for each volume. A tree is defined by its branching factor
and height. Each branch is represented by a residual function, which is constituted by a convolutional layer, a
batch normalization, and a non-linear function. The proposed model is evaluated in various publicly available
databases. A comparison of performance is also done with state-of-the-art deep models for face recognition.
The results of the experiments demonstrate that the proposed model achieved accuracies of 98.65%, 99.19%,
95.84% on FEI, ORL, and LFW databases, respectively.

1. Introduction

The introduction of many Internet of Things (IoT) and smart body
sensors has increased the volume of data significantly in recent years.
The nature of the data is heterogeneous and sparse in most of the
cases. The processing of Big Data is a matter of concern for real-
time applications [1–3]. Consider a scenario where a person is to be
recognized in an airport where there are many sensor cameras. These
cameras capture images of many objects including humans in their
focus areas, and these are capturing images continuously. This huge
amount of image data should be processed in a meaningful way in a
cloud environment so that a specified person can easily be recognized.

Face recognition is one of the oldest yet a dynamic topics of re-
search. It is necessary for security and biometric applications. Early
face recognition systems relied on manual features and traditional clas-
sifiers. Some hand-crafted features include local binary pattern (LBP),
Weber local descriptors (WLD), principal component analysis (PCA),
and histogram of oriented gradients (HOG). Traditional classifiers in-
clude support vector machines (SVM), linear discriminant analysis
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(LDA), and some minimum distant-based classifiers. These features
and classifiers work well in a controlled environment, where faces are
mostly frontal and with a neutral expression, and having less variation
of illumination. However, in many applications such as those related to
surveillance, face images may be occluded, not frontal, and having low
resolution and high variation of illumination. For these applications,
the traditional face recognition systems may not work properly.

Deep learning is a powerful machine learning technique that has
been successfully used in many signal processing applications. The
applications include speech and speaker recognition, image recognition
[4], and video recognition. Since the introduction of deep learning,
many architectures have been proposed in the literature. These archi-
tectures differ in many aspects such as the number of layers, the number
of filters, the size of filters, and the arrangement of layers. If the number
of layers is high, the architecture can be called deep, otherwise, it can
be called shallow. If the filter size is big, the architecture is called
wide, otherwise, it is thin. Normally, a deep architecture provides a
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high accuracy, which can be evident in popular GoogleNet [5], VGG
Net [6], AlexNet [7], and ResNet [8]. These architectures are also
thin. On the other hand, shallow and wide architecture such as a
wide residual network (WRN) emphasized filter size rather than the
depth of the network [9]. Each of these architectures has its own
advantages and disadvantages. A very deep and thin network may
achieve good performance; however, it will have a very high number
of parameters. Normally, a deep learning network with a high number
of parameters may not fit for a real-time application. Therefore, there
needs an equilibrium between the precision and the parameters needed
for security-related real-time applications [10].

The applications in a smart city need an accurate output in real-
time. For example, the traffic congestion and the alternative routes
should be determined in real-time, secured access needs accurate ver-
ification, and a medical diagnosis should be error-free [11,12]. The
smart city may have many components such as smart homes [13], smart
healthcare [14,15], smart schools, smart connected vehicle [16], and
smart shopping [17]. Due to an increase of IoTs, data volume has been
increased by manifolds. This volume is considered as heterogeneous,
and unfiltered. This huge amount of data should be processed care-
fully so that the output is accurate, security is not breached, and the
processing does not take much time. It is very difficult to achieve all
these things at a time; however, there should be a balance between
them [18].

The face is an important biometric component in human verification
and recognition. It can be used as a secured verification process. Many
face recognition systems have been proposed for the last few decades.
The face recognition research has evolved from recognizing faces taken
in a controlled environment to faces captures in an uncontrolled envi-
ronment, from traditional feature extraction techniques to deep-learned
feature extraction techniques.

In this paper, we review some face recognition systems based on
deep neural networks. Then, we propose a new face recognition system
using a tree-based deep neural network [19–21]. The tree-based neural
network provides a good accuracy using a respectable number of
parameters; therefore, it works in real-time, which is very important for
any secured smart city applications. This is the first time the tree-based
deep network is used in the face recognition system.

The major contributions of the paper are: (i) presenting the tree-
based deep model for automatic face recognition system; (ii) evaluating
the system on three public face databases; and (iii) comparing the
system with state-of-the-art face recognition systems, and achieving
better performance, and (iv) proposing a smart city framework where
the system can be deployed.

The paper is structured in the following manner. Section 2 discusses
some related works in the literature. Section 3 presents the smart city
environment, the tree-based deep model for face recognition, and a
description of the databases. Section 4 provides experimental setup,
results and discussion. Finally, Section 5 draws some conclusions.

2. Related studies

In this section, the advancement of face recognition using deep
learning is discussed. In almost all the related previous works used
convolutional neural networks (CNN) as the main architecture. A light
CNN with max-feature-map units was used in biometric face recog-
nition applications in [22]. A biometric quality assessment method
was embedded in the CNN. Sun et al. [23] used cascaded restricted
Boltzmann machines to form a deep convolutional network for face
verification. The method achieved a moderate accuracy of 93.83%
using labeled faces in the wild (LFW) database.

Deep CNN-based face recognition for infants was proposed in [24].
In the database, there were 2100 face images of 210 infants, where
each infant had 10 images. The authors found that increasing the
number of layers does not perform well in infant face recognition. In the
experiments, they found 91.03% accuracy. Guo et al. [25] designed a

Table 1
Summary of previous related works.

Ref. Model name Database Acc. (%)

[22] Light CNN CASIA, FLW 99.0
[23] CNN-RBM LFW 93.8
[24] Deep CNN Private, Newborn 91.0
[25] VGGNet LFW, YTF 97.3
[26] CNN-2 ORL 95
[27] CNN RGB,D,T –
[28] Deep coupled ResNet LFW 99
[29] Deep face LFW, YTF 97.3
[30] Deep ID LFW 97.4
[31] Deep ID2 LFW 99.5
[32] VGGFace LFW 98.9
[33] FaceNet LFW 99.6
[34] AMS loss, Caffe LFW 94.5
[35] CosFace LFW 99.3

deep network using the VGGNet by fusing features from the visible light
image and near-infrared image for face recognition. A fusion strategy
was proposed to fuse scores. They achieved 97.35% accuracy using the
LFW database.

Hu et al. [26] studied the performance of 2D and 3D face recogni-
tion using two different models of CNN. They found that the deeper
CNN model performed better than the other CNN model. In the ex-
periments, 95% accuracy was obtained using the Olivetti Research
Laboratory (ORL) database. A multimodal face recognition system us-
ing modality-specific (RGB and depth) CNNs was proposed in [27].
Some hand-crafted features such as LBP, HOG, and Haar-like fea-
tures were also fused to the deep-learned features to improve the
performance.

A deep coupled ResNet (DCR) model consisting of one trunk net-
work and two branch networks were proposed for face recognition
in [28]. The branch networks were used to convert high-resolution
images into intended low-resolution images. The model achieved 99%
accuracy in the LFW database.

Some popular models for face recognition include DeepFace [29],
DeepID, DeepID2, and DeepID2+ models. Taigman et al. developed the
DeepFace model, which has eight layers. The first three layers have
convolution-pooling layers, the next three layers are locally connected
layers, while the last two layers are fully connected layers. On the
LFW database, the model got more than 97% accuracy. DeepID and its
variants used an ensemble of small CNNs and fused them. Each small
CNN had four convolutional layers, three pooling layers and two fully
connected layers [30,31]. The variations occurred in the number of
filters in the layers. 99.47% accuracy was obtained by the DeepID2+
model using the LFW database.

The VGGFace introduced in 2015 used the VGGNet-16 model, and
obtained around 99% accuracy on the LFW database [32]. Google
introduced the FaceNet [33], which used GoogleNet-24 architecture,
got more than 99% accuracy on the same database. ResNet-based face
recognition systems such as AMS loss [34] and CosFace [35] were
recently developed. These systems achieved high accuracy in several
databases. Table 1 gives a summary of the previous works.

Almost all of the models mentioned in the section mainly focused
on improving the accuracy of face recognition in different constraints.
Very few attempted to develop a low-complex deep model for face
recognition.

3. Materials and methods

3.1. Smart city framework

The smart city framework consists of several components including
smart homes, smart traffic systems, smart shopping, smart healthcare,
high-speed wireless networks, and cloud servers. Fig. 1 shows the smart
city framework used in this work. Various signals captured by IoTs
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Fig. 1. Structure of a smart city framework for face recognition.

and smart devices are sent to the cloud server for processing and
decision. After processing, the decision is sent to the stakeholders.
Stakeholders then can take necessary actions accordingly. Suppose a
scenario where a person wants to access a park. A smart device captures
the person’s facial image and sends the image to the cloud using 5G
wireless technology.

In the cloud, there are several virtual machines (VMs) that can
work in parallel. These VMs are equipped with high processing power.
The face image is processed in real-time in one of these VMs, and
verification is made. The decision is sent to the gate of the park whether
the person can access or not to the park. The cloud has large memory
storage that can store a bulk of multimedia data. The VMs can run
in parallel so that the cloud can handle multiple requests at the same
time [36].

The framework may consist of an edge computing facility. The edge
computing is placed at the edge of local machines and before the radio
access networks [37,38]. The purpose of the edge computing is to
process and filter signals so that the volume of data that should be
transmitted to the cloud is minimized. The local machines in the edge
computing can be smartphones or devices that communicate between
themselves to minimally process the signals. These devices have the
low processing power and their life is restricted by the operating
batteries. The task of processing is distributed to the devices using
an optimization algorithm [39]. The attributes that are taken into
account for the optimization are the battery life, the processing power,
the current load, and the volume of the data. Once the processing is
finished, the processed data are sent to the cloud.

The cloud may have a cloud manager, whose main tasks include
authenticating a request and distributing the processing to the VMs. For
the classification purpose, the manager consults with the storage of the
cloud for pertained parameters. Once the classification is finished, the
result is sent to the stakeholders via the cloud manager.

3.2. Tree-based deep network

A deep neural network (DNN) has fetched many advantages in ma-
chine learning. Since its invention, the DNN has been used in numerous
applications especially in image and speech signal processing. The DNN
has achieved very high accuracy in applications related to image and
speech processing. The deep network requires a large amount of data
for training.

There are many architectures of the DNN. Some of them focus on
the depth while others focus on the size of the filters. Depending on the

application, we may use one of these types of architecture. Recently,
the tree-based deep network has been proposed [19]. The idea of the
tree-based deep model is to distribute the processing in a tree-like
structure.

Two deep models are proposed in this paper. These models are a
single tree model and a parallel tree model. First, the single tree model
structure is described.

In the single tree model, first, the input volume is mapped to a
new volume by increasing the number of channels. Suppose that the
new volume is H × W × C, where H × W is the spatial dimension
of the image, and C is the channel number. This volume is split to
a number of groups equaling the branching factor (b) of the tree. A
residual function is applied to each member of the groups. The residual
function, as shown in Fig. 2(a), is the basic building block of the tree-
based deep model [40]. The residual function has three operations in
succession, which are convolution, batch normalization, and a non-
linear activation function in the form of a rectifier linear unit (ReLU).
This residual function is applied to each member of the groups. At each
tree node, the same splitting algorithm is applied to construct a tree
until a prescribed number of tree height (l) is reached.

In the case of the parallel tree model, once the input volume is
mapped to H × W × C, it is split into g number branches. The volume
of each of the split ones is H × W × C/g. Now g number of parallel
trees is constructed the same way as the single tree model. Each of the
parallel trees is a single tree. The volume H × W × C/g is passed through
a residual function, followed by a single tree structure. Therefore, the
parallel tree model is an extension of the single tree model. Fig. 3 shows
the architecture of the parallel tree model.

The tree-based deep model is beneficial to a smart city environment.
It has several advantages over the traditional deep models. The ad-
vantages include (i) a balance between the number of parameters and
accuracy, (ii) less computational time compared with other very deep
models, (iii) parallel computation of trees, and (iv) a high information
density.

The outputs of branches of a tree are concatenated to produce the
volume of the original input to the tree. Another residual function
is then applied to the concatenated output. For the parallel trees,
if we have four parallel trees, we have four concatenated outputs
followed by corresponding residual functions. The outputs are then
again concatenated to yield the final volume.

Fig. 2(b) displays the structure of deep models. Both the models (sin-
gle tree and parallel trees) are designed into three stages. A convolution
filter is realized to the input volume of the image to convert into an
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Fig. 2. (a) The components of the residual function, and (b) the structure of the tree-based deep model.

Fig. 3. The architecture of the parallel tree model.

image of a predetermined number of channels. This new image is the
into to the first stage. Each stage has three tree modules as shown in
the figure. The number of filters in a stage is doubled by the number of
filters in the previous stage. The first stage has 64 convolutional filters.
Because of the independent nature of the tree modules, the convolution

operations in these modules can run in parallel to reduce the overall
execution time.

The stages bring in flexibility in the model in the sense that one
stage structure does not depend on other stages when hyperparameters
vary. An increase in the number of channels will increase the number
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of parameters, which may cause overfitting. Therefore, we need to
downsample. Between the stages, there are convolutional layers whose
job is to reduce the number of parameters. This is done by choosing a
stride equal to two, which is equivalent to a downsample by a factor
of two. This type of downsampling is superior to a pooling layer. The
output maps of these three stages are 32, 16, and 8, respectively. The
number of channels of these stages is 64, 128, and 256, respectively.
The spatial dimensions were halved between the stages.

A global average pooling (GAP) layer is used after the final stage
to reduce the spatial dimensionality. Therefore, the production of the
GAP layer has a dimension of 1 × 1 × C, by taking the average per
map. There is a softmax layer after the GAP layer. The filter size of all
the convolutional layers except the last one is 3 × 3. The filter size
of the last convolutional layer is 1 × 1. The GAP layer was proved
successful in image processing applications [19]. It reduces the number
of parameters of the models. For example, instead of using the 3 × 3
filter, the GAP uses the 1 × 1 filter, which decreases the number of
parameters by one-ninth for subsequent operations.

3.3. Database

In this section, we discuss databases that were used in the experi-
ments. Three databases were utilized in the experiments for the testing.
The databases are ORL, FEI, and LFW. The ORL database has 10 images
per subject, and there are 40 subjects [41]. So, the number of images
is 400. The face images vary in angular taking, illumination, and facial
expressions. Almost all the faces are having an upright frontal view,
sometimes with a slight left or right rotation. The database was created
at Cambridge University. The size of the images is 92 × 112.

FEI database is larger than the ORL database. The FEI database
includes face images of 100 males and 100 females [42]. Each subject
has 14 images; so, there are 2800 face images. The images have a
size of 640 × 480. The faces are either frontal or angular and have
expressions. Images are colorful and faces were taken in front of a
uniform background.

Labeled Faces in the wild (LFW) is a big database that was de-
signed to recognize faces in unconstrained environments [43]. There
are 13 233 images of 5749 people, where 1680 people have two or more
images. The size of the images is 250 × 250.

The proposed tree-based deep models were trained using the Cana-
dian Institute for Advanced Research (CIFAR-10) database [40]. The
training policy was adopted from [43]. Only flipping and translation
were done according to [43], and no further augmentation was applied.
The size of the images is 32 × 32.

4. Experimental results and discussion

Accuracy and information density were used to evaluate the models
in the experiments. The trained models were fine-tuned by a small sub-
set of a corresponding face database. In the case of the ORL database,
three images per subject were selected for the fine-tuning; in the case
of the FEI database, four images per subject were selected for the fine-
tuning. As the LFW database does not much repetition of a subject’s
face image, only one image per subject was selected in the fine-tuning.
The test was performed by the remaining images per subject. Therefore,
the fine-tuning and test images were mutually exclusive.

The deep models’ parameters were optimized by using a mini-batch
gradient descent algorithm. The momentum value was set to 0.9 and
the entropy loss was used as the loss function. The batch size was 128
and the learning rate was 0.1 at the beginning and reduced to one-tenth
of the previous value in every 20 epochs. The number of branch factor
and tree height were varied, and fixed to four and three, respectively,
because they provided the optimal results.

First, we report the performance of the deep models in terms of
epochs. Normally, if we increase the number of epochs, the accuracy
increases until a certain number of epochs; then, the accuracy either

Fig. 4. Accuracy of the single tree model at different epochs using three databases.

Fig. 5. Accuracy of the parallel tree model at different epochs using three databases.

drops or remains the same. All the experiments were performed using
three databases mentioned earlier.

Figs. 4 and 5 show the accuracies of the deep model using the single
tree and the parallel trees, respectively, for different numbers of epochs.
From both figures, we find the optimum number of the epoch was
50. At epoch 70, though accuracies slightly increased, it took more
time than at epoch 50. In the case of real-time applications, time is
an important factor. In subsequent experiments, we fixed the epoch
number at 50.

Both models achieved similar accuracies in all the three databases
at epoch 50. The accuracies ranged between 97% and 98.5%. The
accuracy using the FEI database was better than using the other two
databases.

Second, we report the performance of the models using different
numbers of initial filters. If we have many filters, the number of
parameters increases which increases the computational complexity of
the system. Figs. 6 and 7 show the accuracies of the models using the
single tree and the parallel trees, respectively. In both the models, the
highest accuracies were obtained when the number of initial filters was
64. Please note that the number of filters was set to 16, 32, 64, or 128.
When the number of filters was 128, the accuracies decreased slightly.
The accuracy using the LFW database was better than using the other
two databases.

The parallel tree model can be constructed using different numbers
of tree modules per tree. If the number of modules is high, the system
can run in parallel processors and the time is reduced to process. We
investigated the effect of the number of modules per tree on accuracy
using the three databases. Fig. 8 shows the accuracy of the model with
a different number of modules. We varied the number of modules to
4, 6, 8, or 10. From the figure, we see that 8 modules or 10 modules
achieved the best accuracy. For example, using 8 modules, the accuracy
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Fig. 6. Accuracy of the single tree model for different numbers of initial filters using
three databases.

Fig. 7. Accuracy of the parallel tree model for different numbers of initial filters using
three databases.

Fig. 8. Accuracy of the parallel tree model for different numbers of modules per tree
using three databases.

was the highest for the LFW database. The accuracy slightly decreased
using 10 modules for this database. For the other two databases, the
accuracies were better at 10 modules than at 8 modules. The accuracy
of using the ORL database was the least.

One of the main objectives of the proposed tree-based deep models
is to achieve high accuracy in less time. A system performs processing
in less time when the number of system parameters is less. The smart
city applications need a system to operate in real-time with high accu-
racy. We investigated the proposed models in terms of the number of
parameters and accuracy. A metric called the information density was
used to evaluate the models as an indicator of the steadiness between
the accuracy and the number of parameters. The information density is

Fig. 9. The information density of the models.

Fig. 10. Accuracy comparison between the models.

defined by the accuracy over the number of parameters in million. If the
accuracy is high and the number of parameters is low, the information
density is high which is good for a model. We compared different
models in terms of information density. Fig. 9 shows the performance
of different models. Four well-known deep models were taken into
account for the comparison purpose. For this particular experiment,
we changed the set up in a way that both the training and the testing
were performed in the CIFAR-10 database. Therefore, the accuracies
were not for face recognition but for image recognition; however, it
does not affect the metric of information density of the models. The
compared models are ResNext [44], wide residual network [9], VGG
16 [6], and MobileNet [45]. The VGG model is very deep and has
high accuracy; however, it has many parameters. The MobileNet is not
very deep and has a comparable accuracy. The ResNext and the wide
residual network lie between the VGG model and the MobileNet in
terms of depth and accuracy. Comparing these four models, the VGG
net and the MobileNet models have much higher information density,
while the other two models have less information density. The proposed
tree-based deep models have higher information density than the four
previous models. The single tree-based deep model outperformed all
other models. For example, the proposed single tree-based model has
an information density of 0.58, while the proposed parallel tree-based
model has an information density of 0.28. The information densities of
the VGG Net and the MobileNet are 0.26 and 0.25, respectively.

Fig. 10 shows the accuracies of face recognition with the LFW
database using different deep neural network models. Here, we con-
sidered five existing models that achieved good accuracies and the
proposed two models. From the figure, we find that the proposed
parallel tree-based deep model gained the accuracy comparable with
that by the Face Net [33]. The Face Net had an accuracy of 99.6%,
while the proposed parallel tree-based model had an accuracy of 99.4%.
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The Face Net is a very deep network that has many layers of convolu-
tion; therefore, the execution time is much higher than the proposed
model. The Cos Face network also has a large number of parameters.
Considering all these aspects we can say that the proposed tree-based
deep model is very efficient for face recognition purposes.

The proposed models have branches, so the computation can be
distributed to the branches to run in parallel. The operations in each
branch are not dependent on the operations in other branches. There-
fore, the computation time is less in the proposed model. The total
numbers of parameters in the single tree-based deep model and in the
parallel tree-based deep model are as follows.

𝑂
(

𝑛.𝑐2.
(

1
𝑏𝐿

+ 𝑚2.
(

1 − 𝑏𝐿

1 − 𝑏
+ 1

𝑏𝐿

)))

For single tree-based model

𝑂
(

𝑛.𝑐2.
(

𝑏𝐿 + 𝑚2.
(

𝑏𝐿+1 − 2 − 𝑏
)))

For parallel tree-based model

where n is the number of filters having size m × m, b and L are the
branching factor and tree height, respectively, and c is the of channels
of the image.

5. Conclusion

The tree-based deep models for face recognition were proposed in
this paper. There were two versions of the proposed model: single tree
and parallel trees. In the parallel trees model, several single trees were
arranged in parallel. The residual function was used as the building
block of the whole architecture. Experiments were performed using
three publicly available face databases. The proposed models achieved
around 99% accuracy using these databases. The information density
of the proposed single tree-based model was near 0.6, which is con-
sidered excellent for a deep model. Compared to the existing deep
models, the proposed models had comparable accuracies with a lesser
number of parameters. These findings prove that the proposed models
can be efficiently used as a face recognition system in real-time for
security purposes. The future directions of the proposed work can be
as follows. First, the proposed models can be extended to include more
components such as the locally aggregated descriptors [46] instead of
the concatenation used in the models. Second, more databases can be
included in the experiments. Third, the proposed models can be used
in other applications such as gender recognition and facial emotion
recognition.
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